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We study the dynamical behavior of complex adaptive automata during unsu- 
pervised learning of periodic training sets. A new technique for their analysis is 
presented and applied to an adaptive network with distributed memory. We 
show that with general imput pattern sequences, the system can display behavior 
that ranges from convergence into simple fixed points and oscillations to chaotic 
wanderings. We also test the ability of the self-organized automaton to recognize 
spatial patterns, discriminate between them, and to elicit meaningful informa- 
tion out of noisy inputs. In this configuration we determine that the higher the 
ratio of excitation to inhibition, the broader the equivalence class into which 
patterns are put together. 

KEY WORDS: Automata dynamics; self-organizing networks; learning 
and recognition. 

1. I N T R O D U C T I O N  

The p rob l em of hand l ing  large amoun t s  of r e d u n d a n t  da ta  and  ext rac t ing  
re levant  in fo rmat ion  f rom them lies at  the hear t  of both  pa t t e rn  recogni t ion  
a u t o m a t a  and  models  of the higher  b ra in  functions,  such as learning and  
associat ive  memory .  As such, they have been  the focus of intense efforts 
a imed  at  des igning a lgor i thms and  archi tectures .  A m o n g  the m a n y  avenues  
be ing  explored,  a p romis ing  one resorts to local  and  paral le l  compu ta t i on  
by  a r rays  of processors  with de loca l ized  memories .  (1-3) 

In spite of all this work, little is known  abou t  the dynamics  of complex  
networks  and  their  behav io r  under  general  c i rcumstances .  Issues such as 
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their self-organization, stability under parameter changes, and the extent of 
their parallel computing cannot be answered with ease, even in the simplest 
nontrivial cases. And yet, even partial answers to these questions are of 
relevance to VLSI design and the understanding of neural organization; the 
latter now emerging as one of the central problems of neurobiology. 

Although part of the scarcity of answers is due to the lack of general 
enough experiments, a more serious problem has been posed by the 
absence of a methodology with which to systematically analyze experimen- 
tal data. We believe that recent advances in dynamical systems theory can 
provide such a framework, and lead to a quantitative understanding of 
these very important issues. Moreover, complex adaptive networks with 
hierarchical structures lend themselves to techniques that have been devel- 
oped in the study of nonlinear systems with few degrees of freedom. ~4) 

This paper reports on work that we have performed on the dynamical 
behavior of complex networks composed of interconnected cells arranged 
in a hierarchically layered structure. The systems that we dealt with are 
such that they possess a fixed wiring configuration but variable connection 
strengths, allowed to track the inputs so as to produce the best output 
according to given criteria. In particular, as the connectivity of the network 
changes when subjected to an input set, it is of interest to determine 
whether an asymptotic or "learning" behavior can take place. By this we 
mean a situation whereby the output produced by the system does not 
change much with further presentations of the same pattern sequence. 
Moreover, one would like to know how such convergence depends on 
parameters such as excitation, lateral inhibition, or connectivity. 

In order to answer these questions, we first present a stroboscopic 
technique to analyze the time evolution of a layered adaptive network 
during unsupervised learning of periodic sequence of training sets (Section 
2). The method is then applied to the experimental study of an adaptive 
network with distributed memory described in Section 3. We show that 
with general input pattern sequences, changing the relative levels of excita- 
tion versus inhibition leads to fixed points, oscillatory states, and chaotic 
wanderings during the adaptive process (Section 4). Moreover, using the 
self-organized network after the adaptive process has taken place, we study 
the size of equivalence classes as a function of excitation and inhibition. 
We also present preliminary results on pattern recognition of incomplete 
and noisy patterns (Section 5). A conclusion summarizes our findings and 
poses some questions for future research, and an Appendix provides the 
mathematical details of Section 3. 

The results that we have obtained point to the usefulness of computer 
experiments in order to gain insights into issues relevant to self-organization 
in complex systems. Rather than optimizing an existing network or trying 
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to closely model neurobiological systems, we have concentrated on the 
general dynamic properties of adaptive automata, a problem which under- 
lies the behavior of many other machines. 

2. STROBOSCOPIC DYNAMICS OF LAYERED NETWORKS 

2.1. General Description of Adaptive Networks 

Consider the general layered network shown in Fig. 1, having p layers, 
each layer containing n cells. Each layer l of the net is characterized at time 
t by vectors Ii(t ) and Ol(t ), made up of the inputs and outputs of the 
layer's cells, an array St(t ) which stores the information about the internal 
state of the network, and a transformation F relating the output of the layer 

Fig. 1. 
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A network with two layers and four cells per layer. The dashed lines show the 
feedback path during the adaptive phase. 
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at time t + r to its input and its state at time t, i.e., Ol(t + r) = F(St ( t ) ,  
It(t)). Each cell i is a device with n afferent inputs stemming from the n 
outputs of the preceding layer, i.e., Ii(t ) = 01_ 1(0, which in turn produces 
an output Ot, i(t ) whose value depends on its internal state St, i(t), the input 
values, and the propagation rules given by F. The inputs to the first layer 
are given externally, and the information is transmitted from layer to layer, 
down to the last layer, which we will call the output layer. 

As long as the states of all the cells are fixed there are no fundamental 
differences between asynchronous or synchronous networks. This is no 
longer true however, if the states are allowed to change in time through an 
adaptive process. Since synchronous networks cover a wide range of 
applications and are easier to model and simulate than asynchronous ones, 
we will restrict our study to them. Moreover, we will assume that the 
external inputs of the first layer are stable for long enough to insure that 
both the state variables of the network and the output of the last layer are 
stable. We will also change the external inputs of the first layer at a fixed 
rate (define by an external clock with a period T >> r). Under these 
conditions the network can then be sampled at the same clock rate in time 
intervals k .  T, which are multiples of T. Therefore transients can be 
ignored and It(t ), Ot(t ) and St( t  ) can then be replaced by I~ k), O~ k) and 
St (h) , respectively, with 

= 1 91 (2.1)  

O~ k) = F (  St(k ), I~ k~) (2.2) 

Any adaptive process consists of a feedback mechanism through which 
the different outputs can act back on the internal state of the network. Here 
we will restrict this process to feedback of the outputs of one layer on its 
own internal state, as shown by the dashed lines in Fig. 1. The adaptive 
process for the layer l is then determined by its initial state and by a 
transformation Gt, relating its state at sampled time k + 1, to its state and 
its output at sampled time k: 

St (k+ ') = Gt( St (k) , O~ k)) (2.3) 

We should point out that the general network being considered here 
has a material connectivity (or wiring) independent of the adaptive process. 
The latter only changes the relative strength of the couplings as the input is 
changed, thereby producing an effective change in connectivity. This is to 
be contrasted with other automata where the rules are such that the wiring 
itself is allowed to change with the adaptive process. 
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2.2. Stroboscopic Dynamics 

In principle, the time evolution of the network is completely given by 
the transformations F, G/, and the input sequence. Unfortunately, with the 
exception of trivial transformations on networks with few elements, our 
knowledge about the dynamics of systems with many degrees of freedom 
does not provide many useful insights. However, the layered and hierarchi- 
cal structure of the network allows us to consider as equivalent all states 
producing the same output at the last layer for a given input vector. 3 Thus, 
we only need to focus on the last output vector, thereby reducing the 
number of independent variables f r omp  �9 n �9 (1 + m - n) to n (if the dimen- 
sionality of the state arrays S z is m �9 n �9 n). For a network such as the one 
we studied (n = 144, p = 3, m = 2), this simplification reduces the number 
of independent variables (or degrees of freedom) by almost three orders of 
magnitude. 

An additional simplification arises if the input patterns I~ ~ are pre- 
sented to the network in a periodic sequence, i.e., 

I~ + K) = i~k) (2.4) 

In this case we can use a method similar to the mappings at a period used 
in classical mechanics, (4) and which Consists in sampling the state of the 
network at each period of the input sequence. This can be achieved by 
recording, for example, the output vector for a given input, or the output 
vector with maximum length at each period. Therefore, analyzing the 
periodically sampled data, it is easier to draw conclusions about the 
system's behavior. In particular, we have the following: 

(i) One point in the sampled hyperspace will indicate a cycle, either a 
static fixed point, or a cycle with the same frequency as the input sequence. 

(ii) Several points will indicate a more complicated motion, such as 
periodic behavior but with a fundamental period which is a harmonic of 
the input pattern sequence. 

(iii) A closed trajectory will indicate quasiperiodic motion, i.e., dy- 
namics in which the state of the network changes with a frequency which is 
incommensurate with that of the input pattern sequence. 

(iv) A cloud of points will indicate the presence of chaotic behavior. 
By this, we mean dynamical behavior such that, although deterministic in 
origin, the system can be best described by probabilistic methods. As we 
show below, this behavior implies lack of convergence of the adaptive 
process although not necessarily poor flow properties of the input patterns. 

3 Thus we will consider as irrelevant any modification of the intermediate outputs or of the 
internal states which do not produce any change on the last output. 
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In spite of the simplification brought about by this periodic sampling 
of the network, we are still faced with the problem of following a vector in 
time in a high dimension hyperspace (144 in our experiment). As we are 
interested in the existence of fixed points for the system, one possible 
solution is to measure some distance between the successive outputs and 
these fixed points. Since unfortunately we have no a priori idea of the fixed 
points distribution in the hyperspace for a given set of parameters, we can 
instead measure the distance between two successive outputs produced by 
the same input pattern. With this technique, the absence of convergence for 
this quantity will signal the lack of any fixed points for the system. On the 
other hand, its convergence to zero will be a strong indication of the 
existence of fixed points. 

In what follows, the distance between two vectors V and W (either 
inputs or outputs), will be defined as one minus the usual coherence 
function between the two vectors, i.e., their inner product divided by their 
Euclidian measures: 

( V , W )  = 1 - V - W / ( H V t l  �9 IlWll ) ( 2 . 5 )  

Since V.  W = IlVII �9 IIWII if and only if V = c- W (c and IlWll nonzero), 
two vectors differing by only a multiplicative constant will be considered as 
equal. 4 

Thus, to describe the network we will measure for each period K of the 
training sequence, the maximum and the minimum value of the quantities: 

( n  ~k+~'m n ~k+(~+0"x)) (2.6) v p  ~ V p  

evaluated at the last layer for k = 0 to K - 1 as a function of time K, with 
the time unit equal to the period of the input sequence. 

3. EXPERIMENTAL ADAPTIVE MACHINE 

In what follows we will describe a particular adaptive network which 
we used in order to test the theoretical ideas presented in Section 2. Among 
the very many cell structures, ~5-1~ we chose the one shown in Fig. 2, which 
was introduced by FukushimaF ) The details of the mathematical formula- 
tion of this algorithm are given in the Appendix. Here we will focus on its 
basic structure, 'along with the numerical values used for the simulations. 

The cells we used were made o f  two spatial filters simultaneously fed 
by the n inputs to the layer. Each filter consists of n multipliers followed by 
a summing unit and is controlled by an adaptive module into which the 

4 O n e  c a n  easi ly c h e c k  t ha t  this d i s t ance  is no t  a t rue  m e a s u r e  as it does  no t  sat isfy the 

t r i a n g u l a r  inequal i ty .  
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Fig. 2. Schematic representation of a cell of the network. 

0"1. h 

outputs of all the cells are fed back, as shown by the dashed lines of Fig. 2. 
The outputs from the two filters are then compared by a nonlinear 
differential amplifier acting as a rectifier (a threshold device with a fixed 
threshold equal to zero). In addition, the output of the second filter added 
to 1 sets the inverse of the amplifier gain. 

The effect of these filters is determined by the actual adaptive process. 
In a pattern recognition automaton, the goal is to increase the distance 
between the outputs produced by the different training patterns and to 
broaden the equivalence classes associated with them. To achieve this, the 
adaptive process is implemented as follows. The output of each cell is 
locally compared to outputs from other given cells in the same layer. The 
states of the cells producing local maxima are then changed by adding a 
part  of the input vector to the coefficients of the first filter, thus producing 
filters better matched to this input. In this way the first set of filters acts as 
a template comparator  and is referred to as the exictatory set of connec- 
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tions. At the same time, a constant term related to the average input value 
is added to the coefficients of the second filter, leading to a measure of the 
"linear power" of all positive inputs, along with a normalization of the 
output vectors. This is done in order to make them independent of the 
number of times the first filter has been modified by the same input. This 
second set of coefficients will be referred to as the inhibitory set of 
connections. Finally, the gain of the differential amplifier is set by a 

Layer 3 
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Fig. 3. Actual implementation of the network. All the cells inside the squares act as inputs 
for the cell at the top of the cones. The  insert shows the random set of connections for the cells 
as indexed by a random permutation. The shaded diamond shows the range of comparison 
between outputs of the same layer during the adaptive process. 
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quantity Q0 which measures the ratio of excitation to inhibition, or equiva- 
lently, the amount of information flowing through the network, as shown in 
the Appendix. 

The automaton was then simulated in the following configuration: 
(1) A three-dimensional structure made up of three layers (p = 3) 

with the input and output vectors folded into 12 by 12 square matrices (Le., 
n = 144). 

(2) The connections between the inputs of one layer and the outputs 
of the preceding one were separated into two sets. Through a first set of 
connections, each cell of-a given layer was connected to its 25 nearest 
neighbors in the previous one (see Fig. 3). A second set of connections had 
a random character and it connected each cell to another 25 cells of the 
previous layer through assignments made with a random number generator. 
This random set of connections, wired into the network and therefore 
independent of the adaptive process, was first introduced by Fukushima ~v) 
in order to extend the range of interactions between cells in different layers. 
These cell-cell interactions were implemented through given matrices B l, 
which thus have only 50 nonzero coefficients. 

(3) The range of comparison between outputs of a layer during the 
adaptive process was determined by the outputs of the 12 nearest neighbors 
(a 5 • 5 diamond configuration within the same layer, as shown in Fig. 3 
by the shaded area). 

(4) Each layer was split in two parts, the first one remaining as an 
adaptive layer, and updated by the output of a second layer with the same 
structure but given filters. This second step provided an edge enhancement 
process of the intermediate output vector, as shown in the Appendix. As far 
as lateral inhibition was concerned, each cell was connected to the 49 
nearest neighbors of the adaptive layer in a similar fashion as the adaptive 
connections. 

4. RESULTS OF ADAPTIVE EXPERIMENTS 

With the specifications given above, we studied the dynamics of the 
network for two training sets of input patterns as a function of the ratio of 
excitation to inhibition Q0. The first training set consisted of all the 
horizontal and vertical full lines (12 dots long) which could be arranged 
into the square input matrix, whereas the second set was composed of the 
26 capital letters A to Z plus the ten digits 0 to 9, arranged in 9 x 11 matrix 
within the 12 x 12 array. 

Typically, the maximum and the minimum of the quantities defined by 
Eq. (2.6) were measured over many periods (from 60 to 600) of the input 
pattern sequence and their decimal logarithm was plotted as a function of 
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time (in units of pattern sequences). This is shown in Figs. 4-6.  The lower 
curves correspond to the minimum distance measured for some patterns 
and the upper one denotes the maximum distance. 

For both sets of patterns, the best convergence properties for the 
network, as measured by these curves, were found for Qo ~ 2. As expected, 
the time to reach a fixed point was longer for the more complicated set of 
input patterns. As Q0 was decreased or increased away from that value, we 
found out that the convergence of the adaptive process was altered, as 
shown in Figs. 4 6. 

In particular, with the input set composed of lines, we discovered (Fig. 
5d) a periodic behavior in a very narrow range of parameter values, i.e., 
1.48 < Q0 < 1.51. It was characterized by rapid oscillations of the distance 
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Fig. 4. The distance (V, W )  as a function of time for a training set of lines. Data obtained 
for values of Q0 = 1.2, 1.8, 2.4, and 3.0. The time unit for this figure, and the following two, is 
defined as the time to process a complete set of input patterns. 



Dynamics of Self-Organization in Complex Adaptive Networks 371 

0 

~ z  

2 
r 4 

* I = r ~ I J 

O. 0 = 1 . 4 5  (a )  
L INES 

80 160 
t 

~ F - - q - - - ,  
240 320  

' 4 

6 
0 100 2 0 0  

t 

300  400  

2 

' 4 

r [ ~ [ , I 

6 r ~ ~ ~  
(] 80 160 240 

t 

i 

(c) 

2 

J 
' 4 

6 
320 0 160  

t 

240 320  

>" 
v 

o 

4 

6 

n E i I i I 

I r I I I 
40  80 120 

t 

(e) 

160  

Fig. 5. The distance (V,W) as a function of time for a training set of lines. Data obtained 
for Q0 = 1.45, 1.47, 1.48, 1.49, and 1.55. 

af ter  m a n y  passes of the comple te  set of inputs.  This  process  represented  a 
d y n a m i c a l  s tate of the ne twork  such that  the relat ive strengths of its 
connec t ions  changed  in a cyclic m a n n e r  as the t ra ining set was presented  
over  a n d  over  again.  Fu r the rmore ,  for values of Q0 between 1.46 and  1.48, 
we found  (Fig.  5b) a chaot ic  regime, with the d is tance  vary ing  erra t ica l ly  
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between zero and small values for several periods of the input sequence. 
We should also point out that these periodic and chaotic behaviors were 
entangled with regimes for which the network flowed toward a fixed point, 
the ranges of existence for each of them being very narrow. 

Another interesting phenomenon is illustrated in Fig. 4d. For long 
times the network shows monotonic convergence towards a self-organized 
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state with a simple fixed point, only to start unraveling itself at later times. 
Although all these phenomena exist for different input sequences, the exact 
numerical values of Q0 associated with them depend on the actual input 
sequence; see, for example, the adaptive behavior for an alphabetic training 
set depicted in Fig. 6a. 

These results are to be contrasted with dynamical Systems with few 
degrees of freedom, in which the sequences of attractors one observes are 
both simpler and immune to external perturbations. (11) The reason for this 
difference seems to be due to the presence of a few patterns which during 
the adaptive process start producing weaker outputs. As this process 
continues, a particular pattern ends up producing a zero output vector, thus 
leading to a bootstrapping procedure to recover from this situation. This in 
turn produces a change in the distributed memory of the network in such a 
way so as to take it away from its fixed point. One can conclude from this 
observation that minor perturbations can eventually drive a complex net- 
work away from its fixed points. 

5. EXPERIMENTS ON THE SELF-ORGANIZED N E T W O R K  

In what follows we will describe experiments which are performed on 
the network after the adaptive process took place. These experiments used 
the network in a pattern recognition mode as a probe of its final state, thus 
studying the filtering properties of the network and how they were related 
to the training set of patterns. 

With the state of the network encoded in its final state arrays St, we 
computed, and stored as templates, all the output patterns O(e k) produced 
by the different input patterns I~ k) of the training set. Typical output 
patterns are shown in Fig. 7; as can be seen, they range from having only 
one nonzero component (Figs. 7a and 7b) to having several cells with 
positive values (Figs. 7c and 7d). We should point out that most of the 
output patterns obtained for all values of Q0 showed this latter behavior. 

For each couple of training input patterns {I~,I~ k') ) we then mea- 
sured both their mutual distance, as defined by Eq. (2.5), i.e., 

d /=  (I~ ~), I~ k')) (5.1) 

and the respective mutual distance of their output vectors at the last layer: 

do = (5,2)  

The output correlations, as a function of Q0, produced by the pat tern S 
with other letters of the alphabet, are summarized in Table I. As Q0 
increases from 1.2 to 2.2 one can easily see that the network evolves from a 
state with very sharp discrimination between similar patterns, to a state 



374 d'Humieres and Huberman 

Qo = 1.2 Qo =2.1 

o l a m ~ 8 ~ J  

o 

0 

e 

0 

0 

0 0 

0 

QO = 1.2 O. 0 = 3  

0 0 

0 

0 

O 

Fig. 7. Input and output patterns for a character and a line. The stars ( , )  represent the 
position of the strongest output, the circles ( o ) the positions of outputs greater than average, 
and the dots (.)  the positions of outputs less than average. 

with broad class aggregation (or equivalence classes), as shown by the 
underlined values. 5 

Moreover, using this procedure for input patterns other than the 
training set, we found out that this result also holds for incomplete patterns 

s The equivalence classes are arbitrarily defined in such a way that the distance between the 
last pattern in a class and the first one excluded is a maximum.  
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Table I. The input and output distances between the pattern S and other 
letters of the alphabet for different values of Q0- The distances equal to 1 

(orthogonal patterns) are omitted for clarity. The numbers with a star 
correspond to distances between patterns lower at the output than at the 

input (worse discrimination after processing). The underlined values denote 
patterns belonging to the same equivalence class. 

Output 

Q0 = 
Pattern Input 1.2 1.4 1.6 1.8 2.0 2.2 

8 0.067 0.700 0.560 0.065* 0.037* 0.002* 0.001 * 
9 0.101 0.559 0.623 0.106 0.092* 0.012" 0.010" 
6 0.101 0.672 0.344 0.095* 0.051" 0.140 0.016" 
B 0.230 0.952 0.828 0.140" 0.080* 
C 0.238 0.786 0.760 0.103" 0.267 0.081" 
3 0.245 0.811 0.718 0.130" 0.080* 
G 0.262 0.781 0.747 0.039* 0.278 0.105" 
O 0.273 0.814 0.792 0.153" 0.296 0.108" 
5 0.274 0.885 0.771 0.386 
Q 0.320 0.800 0.987 0.856 0.282* 0.338 0.183" 
D 0.388 0.970 0.794 0.222* 0.068* 
2 0.396 0.701 0.808 0.275* 0.201 * 0.198" 
E 0.397 0.935 0.812 0.480 
P 0.444 0.936 0.830 

R 0.456 0.993 0.809 
F 0.500 0.991 
U 0.500 0.967 0.819 0.829 0.800 

Z 0.593 0.544 

W 0.678 0.827 0.998 0.967 
7 0.647 0.760 

or noisy inputs as well. Quite generally, we concluded that the higher the 
ratio between excitatory and inhibitory connections, the larger the equivalence 
class and therefore the easier for a given input to produce an output 
correlated with the learnt patterns. 

A possible explanation of these results, along with those of the previ- 
ous section, can be derived from the fact that Qo measures the differential 
gain of the cell and thus the amount of information flowing through the 
network. For low values of Qo, only few elements of the total input 
information are propagated from layer to layer. This leads to a high 
network selectivity and a consequent destruction of important elements of 
the input patterns. On the other hand, for large values of Qo most of the 
information is propagated through the network, leading to a buildup of 
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filters matched to some average input. This in turn results in broad 
aggregation of the patterns as processed by the machine. These results, 
which are also relevant to cognitive processes in neurobiology, emphasize 
the importance of quantitative measurements in the study of pattern 
recognition by automata. 

6. CONCLUSION 

Complex automata are structures situated in between the dynamics of 
few degrees of freedom and the simplifying disorder encountered in many- 
body systems like gases. As such they pose a special challenge when trying 
to understand their dynamical properties as a function of given parameters 
and inputs. 

In this paper we have shown that it is indeed possible to study in a 
quantitative fashion the dynamics of their self-organization. Through the 
introduction of a general methodology, we were able to obtain crisp 
information on issues that are central to the understanding of data process- 
ing by machines and brains. Also, by performing experiments on a particu- 
lar nonlinear adaptive network, we uncovered a rich variety of  behaviors 
and quantified them as a function of excitation, inhibition, and connectiv- 
ity. In that fashion we discovered that in addition to regimes where 
asymptotic learning can take place, there exist scenarios characterized by 
periodic oscillations and chaos. Moreover, experiments on the recognition 
properties of the automaton led to an understanding of the dependence of 
equivalence classes on excitation and inhibition. Generally speaking, we 
concluded that the higher the ratio of excitation to inhibition, the broader 
the equivalence class into which patterns are lumped together. This finding 
might be of relevance to both pattern recognition machines and neuro- 
biology. 

Last but not least, we should mention the issue of universality, i.e., to 
what extent our results depend on both the particular set of training 
patterns or the automaton being simulated. Whereas they indicate that the 
behavior encountered in this study does not depend on a particular pattern 
sequence or type, we have only tentative conclusions concerning indepen- 
dence of network architecture. Although we believe that our findings are 
likely to be found in any layered automaton obeying local computational 
rules, more experiments will be necessary to test this hypothesis. 
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A P P E N D I X  

In this Appendix we present the mathematical details of the algorithm 
used to implement the cell structure shown in Fig. 2. Since each cell needs 
two filters and n coefficients per filter, the state array S t of layer l can be 
separated into two n x n submatrices s l j  and s2j, whose lines sl,~, i and s2j, i 
store the filter coefficients of the cell i. The transformation F is then given 
by 

F(S,V) = qb(s 1 • V,s 2 X V) (A1) 

where qb is a transformation of R" • R" into R" (where R is the real field) 
such that the components U~ of U, V, of V, and W, of W = qs(U, V) are 
related by 

W i = max{0,(V, . -  V,)/(1 + V,)} (A2) 

and where • denotes the usual matrix product. The adaptive process for 
the layer l is then given by an initial state defined by both setting all 
coefficients St (~ to zero, and by 

s/(k + 1) ( v (k+  1) ,,(k+ 1)] = t ~  ,o2,z r G,(S/(~),I~ ~) (a3) 
with 

s~k+ l ~ , j  = s~l,, + ~ , ( I ~ ,  O~ k~ ) (A3a) 

and 

s(k+2,/1) = s(k)2,l + .~l~.- Cl~k~z , Ot~xz ) (A3b) 

where ~I' t and "-z are two transformations of R n • R" into R n'n such that the 
elements Mi, j of M = qtz(U, V), and Ni, j of N = ,-'z(U, V), are related to two 
given parameters ql and q2 (qJ > q2), to the components U/ of U, V, of V 
and to the elements Bzj,j of given n • n matrices Bz, through the relations 

Mi,j = ql " r~i" Bl, i,j" Uj ( A 4 )  

Xi~i = q2- (Mi  • U)/(B,, i • U) (a5)  

with 

and 

6 ,=  1, if V ~ = m a x ( V j ; j E E 1 ,  i )  (A6) 

6 , = 0 ,  if V ~ < m a x ( V j ; j E E I j }  (A7) 

where the matrices B~ provide local intercell connections between eonsecu- 
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tive layers when needed, and where the terms El, s are given sets of integers 
between 1 and n which determine the outputs from other cells in the same 
layer l to be locally compared to the output of cell i. 

If the inputs remain always positive, the coefficients of the state array 
grow indefinitely in time as the training sequence is repeated. At the same 
time, the modifications induced by each pattern become decreasingly 
important. Within this context, ql determines the relative amount of 
change. Simultaneously, V, becomes large compared to 1 in Eq. (A2), and 
Qo = 1/q2 then provides a measure of the differential amplifier gain, or of 
the amount of information flowing through the network. 

Lastly, we should mention that the exact implementation of the 
algorithm is slightly more complicated than that described above. This 
stems out of the need to deal with the problems of bootstrapping the 
network out of a state characterized by a null output for any input. We 
thus replaced Eqs. (A4) and (A5) by 

M,? = q.  8,-B,,,?. Uj (A8) 

N~,j = q .  6i. (Bt, i X U) (a9)  

whenever V~ was zero and still a maximum. In this case the cells in the 
neighborhood of a given one produce a zero output for nonzero input, and 
it becomes necessary to build up the connections with equal weights for the 
two filters. This particular process is continued with the same input pattern 
until the network produces a nonzero output. 

Within this scheme, Eq. (A1) is also replaced by 

F ( S , V ) = ~ ( ~ ( s , •  s 2 X V ) . f X d P ( s ,  X V ,  s 2 X V ) )  (AI') 

where f is a given n X n matrix, usually labeled lateral inhibition in brain 
modeling. This is equivalent to splitting each layer in two parts, the first 
one remaining as an adaptive layer updated by the output of a second one 
having the same structure but given filters. The first filter selects the input 
with the same index as the cell (identity transfer matrix), and the coeffi- 
cients of the second filter are given by f. This second step provides an edge 
enhancement process of the intermediate output vector. For example, if f is 
a bidiagonal matrix filled with 1/2, then V - f •  V is the discrete first- 
order approximation to the derivative of V along its components (V is 
essentially the sampling of a continuous function). This same process can 
construct higher order derivatives or many similar output transformations. 
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